

Common Data and Formulas

TABLE OF CONTENTS

Title	Page
Minimum Permissible Bending Radii When Laying	2
Permissible Pulling Forces	2
Formula for inductance	3
Formula for inductive reactance	3
Formula for capacitance	3
Formula for impedance	3
Formula for short circuit current	4
Temperature Correction Factors for Conductor Resistance	4
Formula for electrical field (for MV, HV and EHV Cables)	5
Formula for charging current (for MV, HV and EHV Cables)	5
Formula for dielectric losses (for MV, HV and EHV Cables)	5

MINIMUM PERMISSIBLE BENDING RADII WHEN LAYING

Multi core cables		All single core cables
Up to U ₀ /U=0.6/1kV	Over U ₀ /U=0.6/1kV	
12 x d	15 x d	15 x d

d : outer diameter of the cable

PERMISSIBLE PULLING FORCES

Means of pulling	Type of cable	Formula	Factor
With pulling head attached to conductors	All types of cable	Ρ=σ.Α	σ = 50 N/mm ² (Cu conductor) σ = 30 N/mm ² (AL conductor)
With pulling stocking	All wire armored cables	P = K . d²	K = 9 N/mm²

P Pull in N;

A Total cross sectional area in mm² of all conductors (but not screen or concentric conductor);

d Outside diameter of cable in mm ;

 $\sigma \qquad \text{Permissible tensile stress of conductor in N/mm^2}\,.$

SIMCO

INDUCTANCE :

L = 0.05 + 0.2 *In*
$$(\frac{k.s}{r})$$
 [mH/km]

Where : In trefoil formation: k=1 In flat formation: k=1.26 s = distance between conductor axes (mm) r = conductor screen radius (mm)

INDUCTIVE REACTANCE :

$$X = 2\pi f \frac{L}{1000} \quad [\Omega/km]$$

CAPACITANCE :

$$C = \frac{\mathcal{E}}{18 Ln \left(\frac{d_o}{d_i}\right)} \quad [\mu F/km]$$

Where : \mathcal{E} = relative permittivity of the insulation (for XLPE insulation \mathcal{E} =2.3) d_o = external diameter of the insulation (mm)

d_i = diameter of conductor including conductor screen (mm)

IMPEDANCE :

$$\mathbf{Z} = \sqrt{\mathbf{R}_{ac}^2 + \mathbf{X}^2} \quad [\Omega/\text{km}]$$

Where : \mathbf{R}_{ac} = AC resistance of conductor (Ω /km) X = reactance (Ω /km)

SHORT CIRCUIT CURRENT :

Copper conductor :
$$I_{s} = 226 \frac{s}{\sqrt{t}} \sqrt{Ln \frac{t_{f}^{+} + 234.5}{t_{i}^{+} + 234.5}}$$
 [A]

Aluminum conductor :
$$I_s = 148 \frac{s}{\sqrt{t}} \sqrt{Ln \frac{t_i^2 + 228}{t_i^2 + 228}}$$
 [A]

Where : S = cross section (mm²)

t = short circuit duration (sec)

 t_i = initial temperature before the short circuit (90°C for XLPE cables)

 t_f = final temperature after the short circuit (250°C for XLPE cables)

TEMPERATURE CORRECTION FACTORS FOR CONDUCTOR RESISTANCE

FOR COPPER CONDUCTORS :

$$\mathbf{k}_{t} = \frac{254.5}{234.5 + t}$$
 $\mathbf{R}_{t} = \frac{\mathbf{R}_{20}}{\mathbf{k}_{t}} \times \frac{\mathbf{L}}{1000}$

FOR ALUMINUM CONDUCTORS :

$$k_t = \frac{248}{228 + t}$$
 $R_t = \frac{R_{20}}{k_t} \times \frac{L}{1000}$

Where :

$$R_{20}$$
 is the conductor resistance at 20°C, in Ω /km ;

 $R_t \qquad \text{is the conductor resistance at } t^oC\text{, in } \Omega/\text{km}\text{ ;}$

L is the length of cable, in m.

ELECTRICAL FIELD (FOR MV, HV & EHV CABLES):

Conductor screen : $E_i = \frac{U}{\underset{i}{r_i Ln} \left(\frac{r_o}{r_i}\right)}$ [kV/mm] ; Insulation screen : $E_o = \frac{U}{\underset{o}{r_o Ln} \left(\frac{r_o}{r_i}\right)}$ [kV/mm]

Where : \mathbf{r}_{i} = radius of conductor screen (mm)

r = radius of XLPE insulation (mm)

U = voltage across insulation

CHARGING CURRENT (FOR MV, HV & EHV CABLES):

 $I_{c} = U_{0} \omega C = U_{0} 2\pi f C 10^{-3} [A/km]$

Where : $U_0 = voltage (kV)$ ω = 2πff = frequency (Hz) $C = capacitance (\mu F/km)$

DIELECTRIC LOSSES (FOR MV, HV & EHV CABLES):

$$\mathbf{W}_{d} = \frac{U^{2}}{3} 2\pi \mathbf{f} \mathbf{C} \cdot \mathbf{tan}(\mathbf{\delta}) \quad [W/km]$$

Where : U = rated voltage (kV) f = frequency (Hz) $C = capacitance (\mu F/km)$ $tan(\delta) = loss angle$